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Abstract
The statistical properties of wavefunctions at the critical point of the spin
quantum Hall transition are studied. The main emphasis is put on the
determination of the spectrum of multifractal exponents �q governing the
scaling of moments 〈|ψ|2q〉 ∼ L−qd−�q with the system size L and the spatial
decay of wavefunction correlations. Two- and three-point correlation functions
are calculated analytically by means of mapping onto the classical percolation,
yielding the values �2 = −1/4 and �3 = −3/4. The multifractality spectrum
obtained from numerical simulations is given with a good accuracy by the
parabolic approximation �q � q(1 − q)/8, but shows detectable deviations.
We also study statistics of the two-point conductance g, in particular, the
spectrum of exponents Xq characterizing the scaling of the moments 〈gq 〉.
Relations between the spectra of critical exponents of wavefunctions (�q),
conductances (Xq) and Green functions at the localization transition with a
critical density of states are discussed.

PACS number: 73.43.−f

1. Introduction

In the framework of the random matrix theory pioneered by Wigner [1] and Dyson [2],
the statistical properties of spectra of complex systems are described by random matrix
ensembles. Within the Dyson classification, three symmetry classes are distinguished
(orthogonal, symplectic and unitary), depending on whether the system is invariant under
the time-reversal transformation and on its spin. It has been understood that this classification
is very general and applies to a great variety of physically distinct systems (see [3] for a recent
review).
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While the Dyson classification is complete for the bulk of the spectrum, more symmetry
classes may arise in the vicinity of a special point on the energy axis. Such non-standard
symmetry classes have attracted a considerable research attention during the last decade. One
group of them is formed by three chiral ensembles [4] describing the spectrum of a massless
Dirac operator near zero energy. The same symmetry is shared by tight-binding models with
purely off-diagonal disorder at the band centre [5]. More recently, four more symmetry classes
were identified [6], which characterize a dirty superconductor or a mesoscopic superconductor–
normal metal system. The Hamiltonian matrix has in this case an additional block structure in
the particle–hole space induced by the form of mean-field Bogoliubov–de Gennes equations
for a superconductor. It was argued [7] that the extended classification scheme including ten
classes (three Wigner–Dyson, three chiral and four Bogoliubov–de Gennes) is complete.

The classification of random matrix ensembles can be equally well applied to disordered
electronic systems. In particular, two-dimensional systems of non-standard classes are of large
interest, in view of their relevance to high-Tc superconductors, which have an unconventional
(d-wave) symmetry of the order parameter and therefore possess low-energy quasiparticle
excitations. In this paper, we will consider a system of class C, which is the Bogoliubov–
de Gennes class with broken time-reversal but preserved spin rotation invariance. The
corresponding Hamiltonian satisfies the symmetry H ∗ = −σyHσy (with σy the Pauli matrix
in the particle–hole space) and has the block structure

H =
(

h �

�∗ −hT

)
(1)

where h = h† and � = �T .
Similarly to the conventional Wigner–Dyson unitary class, a two-dimensional system of

class C undergoes a transition between the phases with different quantized values of the Hall
conductivity [8–10]. More precisely, since the quasiparticle charge is not conserved in a
superconductor, one is led to consider the spin conductivity determining the spin current as a
response to the gradient of the Zeeman magnetic field. The quantization of the Hall component
of the spin conductivity tensor was named the spin quantum Hall (SQH) effect. It was shown
[9] that the SQH effect can be realized in superconductors with dx2−y2 + idxy pairing symmetry
explored in recent literature [11].

While the SQH transition shares many common features with its normal counterpart, it is
qualitatively different as concerns the behaviour of the density of states (DOS) at criticality:
while the DOS is uncritical for the conventional quantum Hall (QH) transition, it vanishes at the
SQH critical point. A network model describing the SQH transition was constructed in [8], and
critical exponents for the scaling of the localization length were determined numerically. In [9],
a mapping onto a supersymmetric spin chain was performed, providing an alternative method
for the numerical study of the critical behaviour. Remarkably, some exact analytical results
for this problem have been obtained by mapping onto the classical percolation [10, 12, 13].
Specifically, it was found that the DOS scales as ρ(ε) ∼ ε1/7, while the average product of
the retarded and advanced Green functions �(r, r′) = 〈GR(r, r′)GA(r′, r)〉 (referred to as
the diffuson propagator, or the diffuson) and the average two-point conductance 〈g(r, r′)〉 at
ε = 0 fall off as |r − r′|−1/2.

It is known that critical wavefunctions at the conventional QH transition have multifractal
nature [14, 15]. Recently, there has been a growth of activity in the direction of quantitative
characterization of the corresponding spectrum of fractal dimensions [16–20]. Zirnbauer [17]
and Bhaseen et al [18] proposed a certain supersymmetric σ -model with a Wess–Zumino–
Novikov–Witten term (in two slightly different versions) as a candidate for the conformal
field theory of the QH critical point. The theory implies an exactly parabolic form of
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the multifractality spectrum. This was confirmed by a thorough numerical study of the
wavefunction statistics at the QH transition [20].

The aim of this paper is to study the wavefunction statistics at the SQH critical point.
We will demonstrate that the exponents �2 and �3 governing the scaling of the second
and third moments of the wavefunction intensity (see section 2 for the formal definition)
can be calculated exactly by analytical means. Quite surprisingly, we find that the index
η = −�2 characterizing the spatial decay of the wavefunction correlations is equal to 1/4, in
contrast to the r−1/2 decay of the diffusion propagator. This leads us to a general analysis of
relations between different critical exponents characterizing the wavefunction statistics in the
qualitatively new situation of the localization transition with a critical DOS. We complement
our analytical results by numerical simulations, which allow us, in particular, to investigate
whether the multifractality spectrum of the SQH critical point is exactly parabolic or not. The
answer to this question, as well as the exact values of �2 and �3 we have found, is of central
importance for identification of conformal theory of the SQH transition, which is the issue of
considerable research interest at present [21–23]. Some of our results were reported in a brief
form in [24].

The paper is organized as follows. In section 2 we remind the reader of some basic
concepts related to the multifractality of critical wavefunctions. In section 3 we describe the
network model of class C and use it to calculate numerically the DOS at the critical point
of the SQH transition. In section 4 we present an analytical calculation which involves a
mapping onto the percolation theory and allows us to calculate the averages of products of
two and three Green functions and thus the exponents �2 and �3. Section 5 is devoted to a
numerical evaluation of the full multifractal spectrum �q . This allows us not only to check the
analytical results of section 4 but also to investigate whether the spectrum is exactly parabolic
(as for the conventional QH critical point) or not. In section 6 we present a numerical study
of statistical properties of the two-point conductance. We further include a scaling analysis
of the relation between the multifractal spectra of the two-point conductance and of the
wavefunctions at a critical point with a vanishing DOS. These analytical arguments clarify
the connection between the numerical findings of section 6 and the results of sections 4, 5
on the wavefunction multifractality. Finally, section 7 contains a summary of our results and
a brief discussion of some remaining open problems.

2. Wavefunction multifractality in systems with non-critical DOS

Multifractality of wavefunctions ψ(r) is known to be a hallmark of the localization transition.
It has been extensively studied in the context of conventional Anderson and quantum Hall
(QH) transitions with non-critical DOS (see [14, 15, 25], and references therein), and we
remind the reader of some basic results. Multifractality is characterized by a set of exponents

τq ≡ d(q − 1) + �q (2)

(d is the spatial dimensionality) describing the scaling of the moments of |ψ2(r)| with the
system size L,

〈|ψ(r)|2q〉 ∼ L−d−τq . (3)

Anomalous dimensions �q distinguish a critical point from the metallic phase and determine
the scale dependence of wavefunction correlations. Among them, �2 ≡ −η plays the most
prominent role, governing the spatial correlations of the ‘intensity’ |ψ|2,

L2d〈|ψ2(r)ψ2(r′)|〉 ∼ (|r − r′|/L)−η. (4)
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Equation (4) can be obtained from (3) by using the fact that the wavefunction amplitudes
become essentially uncorrelated at |r − r′| ∼ L. Scaling behaviour of higher-order spatial
correlations, 〈|ψ2q1 (r1)ψ

2q2(r2) . . . ψ2qn (rn)|〉 can be found in a similar way. Correlations of
two different (but close in energy) eigenfunctions and the diffusion propagator �(r, r′; ω) =〈
GR

E+ω(r, r′)GA
E(r′, r)

〉
(GR,A are retarded and advanced Green functions) possess the same

scaling properties,

L2d〈|ψ2
i (r)ψ2

j (r′)|〉
L2d〈ψi(r)ψ∗

j (r)ψ∗
i (r′)ψj (r′)〉

ρ−2�(r, r′; ω)


 ∼

( |r − r′|
Lω

)−η

(5)

where ω = εi − εj , Lω ∼ (ρω)−1/d , ρ is the density of states and |r − r′| < Lω. In two
dimensions the multifractal spectrum �q plays a key role in the identification of the conformal
field theory governing the critical point, which led to growing interest in the eigenfunction
statistics at the QH transition [16–20].

Applying naively these results to the SQH transition, one would conclude that the r−1/2

scaling of the diffusion propagator found in [10] implies η = 1/2. However, we show below
that this conclusion is incorrect. This demonstrates that one should be cautious when trying to
apply the relations between critical exponents obtained for systems with a non-critical DOS
to those with a critical one (such as the SQH transition), as will be discussed in sections 4.3
and 6.

3. Network model and the density of states

As a model of the SQH system, we use the SU(2) version [8] of the Chalker–Coddington
network describing the QH transition [26]. Dynamics of the wavefunction defined on edges
of the network is governed by a unitary evolution operator U . At each node of the network the
scattering from two incoming into two outgoing links is described by a matrix

S =
(

cos θ sin θ

− sin θ cos θ

)
(6)

with θ = π/4 corresponding to the critical point. Each realization of the network is
characterized by a set of random 2 × 2 spin matrices Ue associated with all edges e of the
network. In view of (1), U satisfies the symmetry U = σyU∗σy , implying that Ue ∈ SU(2).
Diagonalizing U for a square network of size L × L yields 4L2 eigenfunctions ψiα(e) and
eigenvalues e−iεi , where i = 1, 2, . . . , 4L2 and α = 1, 2 is the spin index.

We begin by displaying in figure 1 the numerically calculated DOS ρ(ε) for different
system sizes L. It is seen that after a proper rescaling all data collapse onto a single curve.
Specifically, the energy axis is rescaled to ε/δ, where δ ∝ L−7/4 is the level spacing at ε = 0.
(This scaling of δ is related to the critical behaviour of DOS ρ(ε) ∼ ε1/7 discussed below
via the condition ρ(δ)δ ∼ 1/L2.) The scale invariance of ρ(ε) at criticality is reminiscent of
the analogous property of the level statistics at the conventional Anderson or QH transition
(see [25] for a review). At ε 
 δ the critical DOS scales as ρ(ε) ∼ ε1/7, in agreement with
analytical predictions [10]. On the other hand, at ε ∼ δ one observes an oscillatory structure
qualitatively analogous to the behaviour found in the random matrix theory (RMT) for the
class C [6].

Let us note that, strictly speaking, deviations of DOS from the RMT at ε ∼ δ are not
parametrically small. On the other hand, the numerically found DOS follows very closely
the RMT curve for two oscillation periods. In other words, the energy scale below which the
RMT works (the effective Thouless energy), while being parametrically of order δ, turns out to
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Figure 1. Scaling plot of the density of states for system sizes L = 16 (�), 32 (�), 96 (◦). Dashed
and dotted lines indicate power laws (dashed: ε1/7, dotted: ε2), δ = 1/2πL7/4 denotes the level
spacing at ε = 0. Inset: same data on a linear scale and the result from the random matrix theory
[6] (solid curve).

be several times larger. This indicates that there is a numerical smallness in the problem, and
the SQH critical point shows ‘close-to-metal’ features (similar to the Anderson transition in
2 + ε dimensions with small ε). The small value 1/7 of the DOS exponent is another
manifestation of the same fact.

The states with energies ε 
 δ are localized with the localization length ξε ∼ ε−4/7 [10].
For the smallest energies ε ∼ δ the correlation length ξε is of the order of the system size.
In view of their critical nature, these states are expected to be multifractal, L2q〈|ψiα(e)|2q〉 ∼
L−�q . For ε 
 δ the multifractality holds within a region of the extent ξε (outside which the
wavefunction is exponentially small); hence

L2〈|ψiα(e)|2q〉 ∼ ξ
−2(q−1)−�q

ε ≡ ξ
−τq

ε . (7)

By the same token, spatial correlations are expected to be governed by the multifractality on
scales below ξε . In particular, we have for correlations of two different eigenfunctions with
energies εi, εj ∼ ε

L4〈|ψiα(e)ψjβ(e′)|2〉 ∼ (r/ξε)
�2 r � ξε (8)

(r is the distance between e and e′), and similarly for higher-order correlators. In sections 4
and 5 we will demonstrate the multifractality explicitly and calculate the exponents �q .

4. Two- and three-point correlation functions: mapping onto percolation problem

In this section, we present an analytical calculation of two- and three-point correlation
functions, which allows us to find the fractal dimensions �2 and �3. We use the mapping
onto the classical percolation, following the approach of [13], and demonstrate that it can be
extended on products of two and three Green functions.

4.1. Two-point functions

Consider a correlation function of two wavefunctions,

D(e′, e; ε1, ε2) =
〈∑

ijαβ

ψ∗
iα(e)ψjα(e)ψiβ(e′)ψ∗

jβ (e′)δ(ε1 − εi)δ(ε2 − εj )

〉
(9)
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where e, e′ are two different edges of the network. Introducing the Green function

G(e′, e; z) = 〈e′|(1 − zU)−1|e〉
(which is a 2 × 2 matrix in the spin space), we express (9) as

D(e′, e; ε1, ε2) = (2π)−2〈Tr[GR(e′, e; eiε1) − GA(e′, e; eiε1)]

× [GR(e, e′; eiε2) − GA(e, e′; eiε2)]〉 (10)

where GR,A are retarded and advanced Green functions, GR,A(e′, e; eiε1) = G(e′, e; ei(ε1±i0)).
We will calculate (10) at zero energy, ε1,2 → 0, but finite level broadening, ±i0 → ±iγ with
γ � 1. The scaling behaviour of the correlation function (9) at ε1, ε2 ∼ ε can then be obtained
by substituting ε for γ . We thus need to calculate

D(e′, e; γ ) = (2π)−2〈Tr[G(e′, e; z) − G(e′, e; z−1)][G(e, e′; z) − G(e, e′; z−1)]〉 (11)

with a real z = e−γ < 1. By the same token, in order to understand the scaling properties of
another correlator of two wavefunctions,

D̃(e′, e; ε1, ε2) =
〈∑

ijαβ

|ψiα(e)|2|ψjβ(e′)|2δ(ε1 − εi)δ(ε2 − εj )

〉
(12)

we will consider the correlation function

D̃(e′, e; γ ) = (2π)−2〈Tr[G(e, e; z) − G(e, e; z−1)] Tr[G(e′, e′; z) − G(e′, e′; z−1)]〉. (13)

As discussed at the end of section 3, the scaling behaviour of (11) and (13) at r � ξγ (where
r is the distance between e and e′) is governed by the multifractal properties of wavefunctions
(specifically, by the exponent �2). The general strategy of calculation of the correlation
functions (11), (13) is analogous to that used in [13] for the one-point function TrG(e, e; z).
Therefore, we outline only briefly those steps which generalize directly the calculation in [13],
and concentrate on qualitatively new aspects.

The Green functions in (11), (13) are straightforwardly represented in the form of a sum
over paths

G(e, e′; z) =
∑

paths e′→e

. . . · zUej
sj · zUej+1sj+1 · . . . (14)

where sj is the corresponding matrix element (cos θ , sin θ , or −sin θ ) of the S-matrix between
the edges ej and ej+1. Equation (14) generates a convergent expansion in powers of z when
|z| < 1; otherwise, the identity

G†(e, e′; z) = 1 · δee′ − G(e′, e; (z∗)−1) (15)

is to be used (in all our calculations z is real, so that z∗ = z). As shown below, each of the
double sums over paths obtained by substituting (14), (15) in (11) or (13) can be reduced to a
single sum over classical paths (hulls) in the percolation problem. This remarkable reduction
crucially relies on the following two statements:

1. Only paths visiting each edge of the network either 0 or 2 times are to be taken into
account; contributions of all the remaining paths sum up to zero,

2. Using statement 1, it is easy to see that each node may be visited 0, 2, or 4 times. The
second statement concerns the nodes visited four times. As illustrated in figure 2, there
are three possibilities how this may happen; the corresponding contributions have weights
(i) cos4 θ , (ii) sin4 θ and (iii) −sin2 θ cos2 θ from the scattering matrix at this node. The
statement is that one can equivalently take into account only the contributions (i) and (ii)
with the weights cos2 θ and sin2 θ , respectively.
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(iii)
c s

c–s

c

c

c

c

s s

–s –s

(ii)(i)

Figure 2. Possible configurations of paths passing four times through a network node. The
symbols c and ±s denote the elements cos θ,± sin θ of the S-matrix at the node.

In [13], both statements were proved for the case of the average of a single Green function
〈G(e, e; z)〉. We show below that they are valid for all the two-point functions entering (11),
(13), as well as for averaged products of three Green functions (considered in section 4.2).
Let us emphasize that such a generalization is far from trivial. This point is well illustrated by
the fact that products of four (or more) Green functions determining the exponents �q with
q = 4, 5, . . . can not be mapped onto the percolation within our approach (see section 4.3 and
the appendix).

We now proceed by proving statement 1. It is convenient for us to recall first the
corresponding proof for the case of a single Green function, 〈Tr G(e, e; z)〉, considered in
[13]. For an arbitrary edge f the paths entering (14) can be classified according to the number
k of times they pass through f . The contribution of paths with k �= 0 has the form

∞∑
k=1

〈Tr B[Uf A(f, f )]k〉 (16)

where B is a sum over all paths going from f to e and then from e to f , and A(f, f ) denotes
a sum over paths which begin and end on f and do not return to f in between. Since A(f, f )

is a linear combination of SU(2) matrices with real coefficients, it can be represented as
A(f, f ) = |A(f, f )|Ã(f, f ), where Ã(f, f ) ∈ SU(2) and |A(f, f )| is a real number. After
a change of the integration variable, Uf Ã(f, f ) → Uf , equation (16) then reduces to

∞∑
k=1

〈
Tr BUk

f

〉|A(f, f )|k. (17)

Since SU(2) matrices can be represented as U = exp(iαnσ), with a real α and a unit vector
n (σi are the Pauli matrices), one finds

Uk = cos kα · 1 + i sin kα nσ. (18)

The SU(2) invariant measure is (2/π)
∫ π

0 dα sin2 α
∫

dn, where dn is the conventional
measure on the sphere. Therefore, for an integer k

〈Uk〉 = ck · 1 ck =




1 k = 0

− 1
2 k = 2,−2

0 otherwise.

(19)

Substituting (19) in (17), one finds that only the term with k = 2 survives, which completes
the proof of the statement 1 for the case of an average of one Green function.

We now turn to the products of two Green functions. Consider

〈Tr G(e, e′; z)G(e′′, e′′′; z)〉 (20)

(we will need below both cases e′′ = e′, e′′′ = e, and e′′ = e, e′′′ = e′). Using (14), we
classify the contributions to (20) according to the numbers of returns k1, k2 to the edge f for
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the corresponding two paths. We want to show that only the contributions with k1 + k2 = 0, 2
are to be taken into account. If one of ki is zero, the proof is obtained in the same way as for
a single Green function (see above). We thus consider the remaining contributions, which are
of the following form:

∞∑
k1,k2=1

〈Tr B1[Uf A(f, f )]k1B2[Uf A(f, f )]k2〉 (21)

where B1 is a sum over the paths f → e and e′′′ → f , and B2 is a sum over the paths f → e′′

and e′ → f . Performing the variable change Uf Ã(f, f ) → Uf as before, we get
∞∑

k1,k2=1

〈
Tr B1U

k1
f B2U

k2
f

〉|A(f, f )|k1+k2 . (22)

Using (18), we now calculate the average over Uf in (22):〈
Tr B1U

k1
f B2U

k2
f

〉 = Tr B1B2〈cos k1α cos k2α〉α − 1

3
Tr

∑
i

B1σiB2σi〈sin k1α sin k2α〉α

= 1

2
Tr

(
B1B2 +

1

3

∑
i

B1σiB2σi

)
ck1+k2 +

1

2
Tr

(
B1B2 − 1

3

∑
i

B1σiB2σi

)
ck1−k2

≡ b1ck1+k2 + b2ck1−k2 . (23)

The only property of the factors b1, b2 which is important for us at this stage is that they are
independent of k1, k2. The sum (22) is therefore reduced to the form

∞∑
k1,k2=1

(b1ck1+k2 + b2ck1−k2)|A(f, f )|k1+k2 . (24)

While the first term in brackets is non-zero only for k1 + k2 = 2 (i.e. k1 = k2 = 1) as required,
the second one seems to spoil the proof. Let us perform, however, a summation over k1 at
fixed k1 + k2 = k. Using equation (19), we then find that the coefficients in the second term
cancel for any even k � 4 (for odd k all terms are trivially zero):∑

k1+k2=k

ck1−k2 = ck−2 + ck−4 + · · · + c−(k−2)

= c2 + c0 + c−2 = 0. (25)

Therefore, only the term with k1 = k2 = 1 survives in the sum (24), which completes the
proof. 4

Applying now the statement 2, the proof of which is given in the appendix, we represent
each node as a superposition of contributions of types (i) and (ii) (figure 2) with weights cos2 θ

and sin2 θ , equal to 1/2 at the SQH critical point. The network is then reduced to a weighted
sum over all its possible decompositions in a set of closed loops (such that each edge belongs
to exactly one loop). These loops can be viewed [10, 13] as hulls of the bond percolation
problem. Non-zero contributions to the correlation function (20) come from pairs of paths
retracing exactly twice a loop or a part of it. This yields for z < 1

〈Tr G(e′, e; z)G(e, e′; z)〉 = 〈Tr G(e′, e; z−1)G(e, e′; z−1)〉
= −2

∑
N

P(e′, e; N)z2N (26)

4 The correlation function 〈Tr G(e, e; z)Tr G(e′, e′; z)〉 is analysed in the same way, yielding again a sum of type
(24) so that our argument remains valid.
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〈Tr G2(e′, e; z)〉 = 〈Tr G2(e, e′; z−1)〉
= −

∑
N

P1(e
′, e; N)z2N (27)

where P(e′, e; N) and P1(e
′, e; N) are probabilities that the edges e and e′ belong to the same

loop of the length N (resp. with the length N of the part corresponding to the motion from e
to e′). Furthermore, to calculate the correlation function 〈Tr G(e′, e; z)G(e, e′; z−1)〉 entering
(11), we apply identity (15) to the second Green function and then use the property

〈Tr G(e′, e; z)G†(e′, e; z)〉 = −2〈Tr G2(e′, e; z)〉 (28)

following from the SU(2) symmetry. As a result, we find

〈Tr G(e′, e; z)G(e, e′; z−1)〉 = −2
∑
N

P1(e
′, e; N)z2N (29)

and, combining (26) and (29),

π2D(e′, e; γ ) = 1

2

∑
N

[P1(e
′, e; N) + P1(e, e

′; N)]z2N −
∑
N

P(e′, e; N)z2N. (30)

Equations (26), (29), (30) express the quantum correlation functions entering (11) in
terms of purely classical quantities P(e′, e; N) and P1(e

′, e; N). To analyse the results, we
recall some facts from the percolation theory. It is known that the fractal dimension of the
percolation hulls is 7/4 [27], implying (see [28] for a recent discussion) that P and P1 scale as

P(e′, e,N), P1(e
′, e,N) ∼ N−8/7r−1/4 r � N4/7 (31)

and fall off exponentially fast at r 
 N4/7, where r is the distance between e and e′. This
yields for the correlation functions in (26) and (29) (which we abbreviate as 〈GRGR〉, 〈GAGA〉,
〈GRGA〉)

〈GRGR〉 = 〈GAGA〉 � 〈GRGA〉 ∼ r−1/2 r � ξγ ≡ γ −4/7 (32)

in full agreement with the scaling argument of [10]. However, these leading order terms cancel
in (30) since ∑

N

P(e′, e,N) =
∑
N

P1(e
′, e,N) = P(e′, e) (33)

where P(e′, e) is the probability that the edges e and e′ belong to the same loop. The result
is non-zero due to the factors z2N only, implying that relevant N are now N ∼ γ −1, so that
〈(GR − GA)(GR − GA)〉 scales differently compared to (32),

D(e′, e; γ ) = 1

π2

∑
N

[P(r,N) − P1(r,N)](1 − e−2Nγ )

∼ P(r, γ −1)γ −1 ∼ (ξγ r)−1/4 r � ξγ . (34)

Using now definition (9) of D and the DOS scaling, ρ(ε) ∼ ε1/7 ∼ ξ
−1/4
ε , we find for r � ξε

L4〈ψ∗
iα(e)ψjα(e)ψiβ(e′)ψ∗

jβ(e′)〉 ∼ (r/ξε)
−1/4. (35)

The correlation function (13) is calculated in a similar way. The results for the
〈GRGR〉, 〈GAGA〉 and 〈GRGA〉 terms in (13) have the form

〈Tr G(e, e; z)Tr G(e′, e′; z)〉 = 4 − 2
∑
N

[P(e; N) + P(e′; N)]z2N

+
∑
NN ′

P−(e, e′; N,N ′)z2(N+N ′) +
∑
N

P(e, e′; N)z2N (36)
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〈Tr G(e, e; z−1)Tr G(e′, e′; z−1)〉 =
∑
NN ′

P−(e, e′; N,N ′)z2(N+N ′) +
∑
N

P(e, e′; N)z2N (37)

〈Tr G(e, e; z)Tr G(e′, e′; z−1)〉 = 2
∑
N

P(e′; N)z2N −
∑
NN ′

P−(e, e′; N,N ′)z2(N+N ′)

−
∑
N

P(e, e′; N)z2N (38)

where P(e; N) is the probability that e belongs to a loop of length N, while P−(e, e′; N,N ′)
is the probability that e and e′ belong to different loops of lengths N and N ′, respectively. A
larger number of terms in (36)–(38) as compared to (26), (29) is because of two reasons. First,
there is a unit matrix contribution of a ‘path of zero length’ to the expansion (14) of the Green
function G(e, e; z). Second, e and e′ may now belong to different loops and still give a finite
contribution, since each of the two paths will retrace twice the corresponding loop.

Combining (36)–(38) and using the identities

P(e, e′; N) +
∑
N ′

P−(e, e; N,N ′) = P(e; N) (39)

∑
N

P(e; N) = 1 (40)

we get for the correlation function (13)

π2D̃(e′, e; γ ) =
∑
N

P(e, e′; N)(1 − z2N) +
∑
NN ′

P−(e, e′; N,N ′)(1 − z2N)(1 − z2N ′
). (41)

We see again that at z ≡ eγ = 1 the result is zero, and that at small γ it is dominated by
N ∼ γ −1. Using equation (31) and

P−(e, e′; N,N ′) ∼ P(e; N)P(e′; N ′) ∼ N−8/7(N ′)−8/7 (42)

we find that the first term in (41) is ∼ξ
−1/4
γ r−1/4 at r � ξγ , while the second one is ∼ξ

−1/2
γ

and thus can be neglected. Therefore, we find that D̃ shows the same scaling behaviour as D
(see equation (34)),

D̃(e′, e; γ ) �
∑
N

P(e, e′; N)(1 − e−2Nγ ) ∼ ξ−1/4
γ r−1/4 r � ξγ . (43)

In other words, the wavefunction correlator
〈∣∣ψ2

iα(e)ψ2
jβ(e′)

∣∣〉 with εi, εj ∼ ε scales at r � ξε

in the same way as (35),

L4〈∣∣ψ2
iα(e)ψ2

jβ (e′)
∣∣〉 ∼ ρ−2(ε)D̃(e′, e; γ ∼ ε) ∼ (r/ξε)

−1/4. (44)

Both equations (35) and (44) imply that the fractal exponent

η ≡ −�2 = 1
4 (45)

at variance with what one might naively expect from the r−1/2 scaling of the diffusion
propagator 〈GRGA〉, equation (32).

4.2. Three-point functions

We now consider averaged products of three Green functions, analogous to the two-point
functions (11) and (13),

D(e, e′, e′′; γ ) = (2π)−3〈Tr [G(e, e′; z) − G(e, e′; z−1)][G(e′, e′′; z) − G(e′, e′′; z−1)]

× [G(e′′, e; z) − G(e′′, e; z−1)]〉 (46)
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D̃(e, e′, e′′; γ ) = (2π)−3〈Tr [G(e, e; z) − G(e, e; z−1)]Tr [G(e′, e′; z) − G(e′, e′; z−1)]

× Tr [G(e′′, e′′; z) − G(e′′, e′′; z−1)]〉. (47)

The key role in the calculation of (46) and (47) is played by the proofs of applicability of
statements 1 and 2 (section 4.1) to the products of three Green functions. Details of these
proofs are given in the appendix. After the two statements are applied and the network is
reduced to a sum over its loop decompositions (as in section 4.1), the correlation functions are
calculated straightforwardly. In particular, we find for the averaged products of three Green
functions entering (46)

〈Tr G(e, e′; z)G(e′, e′′; z)G(e′′, e; z)〉 = −
∑
N

[3P(e, e′, e′′; N) + P(e′′, e′, e; N)]z2N (48)

〈Tr G(e, e′; z−1)G(e′, e′′; z−1)G(e′′, e; z−1)〉 =
∑
N

[P(e, e′, e′′; N) + 3P(e′′, e′, e; N)]z2N

(49)

〈Tr G(e, e′; z)G(e′, e′′; z)G(e′′, e; z−1)〉 = −2
∑
N

P1(e, e
′, e′′; N)z2N (50)

〈Tr G(e, e′; z−1)G(e′, e′′; z−1)G(e′′, e; z)〉 = 2
∑
N

P1(e
′′, e′, e; N)z2N (51)

where P(e, e′, e′′; N) is the probability that the edges e, e′ and e′′ belong to the same loop of
length N, with e′ lying on the path from e′′ to e, while P1(e, e

′, e′′; N) is the same probability
but with N being the length of the segment from e′′ to e. Combining equations (48)–(51),
we express the correlation function (46) in terms of the classical probabilities P and P1.
Remarkably, the situation is qualitatively different as compared to the calculation of two-point
functions (section 4.1): the leading terms in (48)–(51) do not cancel in the expression for
D(e, e′, e′′; γ ). We can thus simply set γ = 0 (z = 1), which yields

(2π)3D(e, e′, e′′; γ ) � 2[P(e, e′, e′′) + P(e′′, e′, e)] r � ξγ (52)

where P(e, e′, e′′) = ∑
N P(e, e′, e′′; N) is the probability for e, e′ and e′′ to belong to the

same loop with the orientation e ← e′ ← e′′ ← e, and r is the characteristic scale of the
distances between e, e′ and e′′.

The correlation function (47) is calculated in the same way, and the results are qualitatively
similar. We thus skip intermediate formulae and only present the final result

(2π)3D̃(e, e′, e′′; γ ) � 8[P(e, e′, e′′) + P(e′′, e′, e)] r � ξγ (53)

which differs from (52) by an overall factor of 4 only.
Using either of equations (52), (53), we can determine the fractal exponent�3. In analogy

with (31), the probability for the edges e, e′ and e′′ separated by distances ∼r to belong to the
same loop (percolation hull) of a length N scales as

P(e, e′, e′′; N) ∼ N−8/7r−1/2 r � N4/7 (54)

and is exponentially small for r 
 N4/7. Summing over N, we thus get

P(e, e′, e′′) ∼ r−3/4. (55)

Substituting this in equations (52), (53) and expressing D and D̃ in terms of wavefunctions in
analogy with the two-point functions (9), (12), we find for r � ξε

L6〈ψiα(e)ψ∗
iβ(e′)ψjβ(e′)ψ∗

jγ (e′′)ψkγ (e′′)ψ∗
kα(e)〉,

L6〈|ψiα(e)ψjβ(e′)ψkγ (e′′)|2〉 ∼ r−3/4

ρ3(ε)
∼ (r/ξε)

−3/4. (56)
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Therefore, the exponent �3 is equal to

�3 = − 3
4 . (57)

4.3. Discussion

The situation we encountered while calculating two- and three-point functions is qualitatively
different from what happens at conventional localization transitions. Specifically, in the
conventional case average products of only retarded or only advanced Green functions are
negligible compared to mixed averages containing both GR and GA, e.g. 〈GRGR〉, 〈GAGA〉 �
〈GRGA〉. For this reason, the wavefunction correlators, which are proportional to
〈(GR − GA)(GR − GA)〉, are determined by 〈GRGA〉 (and similarly for higher moments).
In contrast, we have found in the SQH case that the correlators of the 〈GRGR〉 (or
〈GAGA〉) type are approximately equal to 〈GRGA〉 and cancel it in the leading order (so
that 〈(GR − GA)(GR − GA)〉 scales differently). Evaluation of three-point functions made
the overall picture even more complex: while we obtained again an identical scaling of, say,
〈GRGRGR〉 and 〈GRGRGA〉 correlators, this time the cancellation was not complete, and the
correlation function 〈(GR − GA)(GR − GA)(GR − GA)〉 scaled in the same way.

To shed more light on the reason for these different types of scaling behaviour, it is
instructive to reverse the logic and examine how the diffuson scaling (32) can be obtained
from wavefunction correlations (35). It is straightforward to express the zero-energy diffusion
propagator in terms of the correlation function D(e′, e; ε1, ε2) defined in equation (10),

�(e′, e) ≡ 〈Tr GR(e′, e; 1)GA(e, e′; 1)〉 =
∫

dε1 dε2

(1 − e−iε1+0)(1 − e−iε2−0)
D(e′, e; ε1, ε2).

(58)

As discussed in section 4.1, D(e′, e; ε1, ε2) scales with the distance r = |e′ −e| and the energy
ε1,2 ∼ ε as follows

D(e′, e; ε1, ε2) ∼ (r/ξε)
�2ξ

−2xρ

ε r � ξε (59)

where �2 = −1/4, xρ = 1/4 is the scaling dimension of DOS defined by ρ(ε) ∼ ξ
−xρ

ε , and
ξε = ε−1/(2−xρ) = ε−4/7. (For r 
 ξε the functionD(e′, e; ε1, ε2) is exponentially small.)

Substituting (59) in (58), we see that if 2xρ + �2 > 0, which is the case for the SQH
transition, the energy integral in (58) is dominated by ε1,2 ∼ ε(r), where ε(r) is defined by
ξε(r) ∼ r (i.e. ε(r) ∼ r−(2−xρ ) = r−7/4), and can be estimated as

�(e′, e) ∼ D(e′, e; ε1, ε2)|ε1,2∼ε(r)

∼ r−2xρ = r−1/2 (60)

in full agreement with the exact result (32).5 This is in stark contrast with the case of
a conventional localization (Anderson or QH) transition, when the diffusion propagator �

(or any other correlation function of the 〈GRGA〉 type) depends in a singular way on the
infrared cutoff set by Lω, see the last line of equation (5). On the other hand, equation (60)
has the familiar form of a two-point correlator in a conformal field theory (or, more generally,
in a field-theoretical description of standard critical phenomena), where 〈Oi (r1)Oi (r2)〉 scales
as |r1 − r2|−2xi , with xi being the scaling dimension of the operator Oi .

5 Since integral (58) is determined by the upper cutoff ε(r) (and not by the vicinity of ε = 0), this calculation applies
not only to � = 〈GRGA〉, but equally well to 〈GRGR〉 and 〈GAGA〉, in agreement with (32).
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Generalization to higher moments is straightforward. We define a wavefunction
correlation function

D(q)(e1, . . . , eq ; ε1, . . . , εq) = (2π)−q〈Tr [(GR − GA)(e1, e2; eiε1)(GR − GA)(e2, e3; eiε2)

× · · · × (GR − GA)(eq, e1; eiεq )]〉 (61)

and a set of 〈G . . .G〉 correlation functions,

�(q)
s1...sq

(e1, . . . , eq; ε1, . . . , εq) = 〈Tr Gs1(e1, e2; eiε1) . . .Gsq
(eq , e1; eiεq )〉 (62)

where sj = R or A. Assuming that all distances between the points ei are ∼r , we have in
analogy with (59),

D(q)(e1, . . . , eq ; ε1, . . . , εq) ∼ (r/ξε)
�q ξ

−qxρ

ε r � ξε. (63)

Writing for �
(q)
s1...sq

a spectral representation of type (58), we see that the integrals are determined
by the upper limit ε ∼ ε(r) = r−(2−xρ ) provided

�(q) ≡ qxρ + �q > 0. (64)

Under this condition, we find that �
(q)
s1...sq

is in fact independent of the indices si and scales as

�(q)
s1...sq

(e1, . . . , eq ; ε1, . . . , εq) ∼ r−qxρ . (65)

For larger q, when qxρ + �q < 0, the energy integrals are dominated by the vicinity of
ε = 0. Consequently, the correlation functions �

(q)
s1,...,sq

start to depend in a singular way
on the infrared cutoff (ξε) and are expected to scale in the same way as D(q), equation (63)
(with a numerical prefactor depending on indices si), similar to the conventional Anderson
localization transition.

The value of q separating the two regimes is thus determined by the equation qxρ + �q = 0.
For the SQH transition (xρ = 1/4) its solution is, in view of equation (57), q = 3. Remarkably,
this is also the largest value of q for which the mapping onto percolation described above still
works (see the appendix). We believe that this is not a mere coincidence. Indeed, within this
mapping average products �

(q)
s1...sq

of Green functions are expressed in terms of probabilities
of the percolation theory, and are therefore of order unity for r ∼ 1. On the other hand,
equation (63) yields, in the regime qxρ + �q < 0, a result which is much larger than unity at
r ∼ 1, ξε 
 1 and diverges in the absence of the infrared cutoff, ξε → ∞. We see no way
such behaviour might be produced by the percolation theory.

Finally, we discuss a relation between our consideration and the field-theoretical
approach to the wavefunction multifractality [18, 23, 29–32]. In the renormalization-group
language, �(q) defined by equation (64) are scaling dimensions of operators of the type
O(q) ∼ ψs1ψ

†
s ′

1
. . . ψsq

ψ
†
s ′
q
, where ψ,ψ† are electronic fields. Averaged products of Green

functions are expressed as correlation functions of the corresponding operators O(q); in
particular, (62) takes the form

�(q)
s1...sq

∼ 〈
TrO(1)

s1s2
(e2)O(1)

s2s3
(e3) . . .O(1)

sq s1
(e1)

〉
. (66)

To calculate the scaling behaviour of such correlation functions, one applies the operator
product expansion (OPE) [30–32]. Generically, the identity operator will be among those
generated by the OPE. Moreover, under the condition �(q) > 0 (equation (64)) it will
be the most relevant operator and will dominate the expansion, leading to the gap scaling
�(q) ∼ r−q�(1), in agreement with (65). On the other hand, if �(q) < 0, the operator
O(q) will give a dominant contribution to OPE, leading to a multifractal type of scaling,
�(q) ∝ r−q�(1)(r/ξε)

�(q), as in equation (63). What is, however, non-trivial from this point
of view, is that the scaling of the wavefunction correlator (61) has the multifractal form (63)
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independent of the sign of �(q). This means that in the regime �(q) > 0 the leading (gap
scaling) terms (65) cancel in the particular combination of the functions �(q) corresponding to
D(q), and subleading terms determine the result (63). A similar cancellation of leading scaling
terms in the context of classical percolation was recently discussed in [28].

5. Wavefunction statistics: numerical results

5.1. Multifractality spectrum

The analytical treatment of section 4 yielded results for the anomalous dimensions at two
distinct values of q, �2 = −1/4 and �3 = −3/4. In order to obtain more complete
information about the wavefunction statistics, namely the multifractality spectrum at arbitrary
q, we have performed numerical simulations. A question we are particularly interested in is
whether or not the spectrum is exactly parabolic. A definite answer to this question will imply,
along with exact values of �2 and �3, an important constraint on the conformal theory of the
critical point, which is a subject of current research [21–23].

Before we come to the presentation of our findings, we give a few remarks about technical
aspects of our numerics. We compute wavefunctions by numerically diagonalizing the
4L2 × 4L2 unitary time evolution operator U of the Chalker–Coddington network described
in section 3. Using advanced sparse matrix packages [33], we selectively calculate only
states with energies in the vicinity of ε = 0, which are critical over the whole extent of the
system (ξε ∼ L). Specifically, we consider, for each realization of the network, four lowest
eigenstates (i.e. with eigenvalues e−iε closest to unity). The number of wavefunctions in a
statistical ensemble we obtain this way ranges from about 107 for L = 16 to 2 × 104 for
L = 384.

To determine the multifractality spectrum τq , we calculate for each wavefunction ψi the
generalized inverse participation ratio (IPR)

Pq =
∑
αe

|ψiα(e)|2q (67)

and analyse the scaling of the average 〈Pq〉 with the system size L. The data can be fitted very
well by the power law

〈Pq〉 = cq(2L)−τq . (68)

To demonstrate this, we show in figure 3 the system size dependence of 〈Pq〉(2L)τq , with τq

obtained from the fit. The plot is organized in such a way that a pure power law (68) would
correspond to a horizontal line. This kind of plot is very sensitive to any corrections to a pure
power-law behaviour of 〈Pq〉. Since no systematic curvature is observed, corrections to scaling
are extremely small. This allows us to determine the anomalous dimensions �q = τq + 2(1−q)

with great accuracy.
The obtained results for �q are shown by a solid line in the upper panel of figure 4.

We choose to plot �q/q(1 − q), since this would give a constant for an exactly parabolic
spectrum, which is uniquely determined by η, �q = ηq(1−q)/2. According to our analytical
calculations (section 4), �q/q(1 − q) is equal to 1/8 for both q = 2 and q = 3; this value is
marked by the dashed line in the figure. It is seen that the numerical results agree perfectly
well with the analytical findings at q = 2 and q = 3. Furthermore, the parabolic dependence
may serve as a numerically good approximation in the whole range of q we studied,

�q � q(1 − q)

8
. (69)
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Figure 3. Scaling of the average IPR with the system size L for several values of q = 0.5 (◦),
1.5 (♦), 2 (�), 2.5 (�), 3 (�), 3.5 (�), 4 (�). The system size dependence of the amplitude
cq (L) ≡ 〈Pq 〉(2L)τq is presented, with τq ≡ 2(q − 1) + �q shown in figure 4. The scattering of
the data is due to the limited size of the statistical ensemble used. The solid line is a guide to the
eye corresponding to the vanishing of finite size corrections (cq (L) = const).
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Figure 4. Upper panel: anomalous dimension �q (solid line) describing the scaling of the average
IPR 〈Pq 〉. The functional form �q/q(1 − q) highlights the deviation from exact parabolicity (69)
indicated by the dashed line. The circles correspond to the exponent �̃q obtained from the scaling

of the typical value P
typ
q . Lower panel: singularity spectrum f (α), numerical results (solid line)

and the parabolic approximation (70) (dashed line) are shown. The inset depicts a magnification
of the apex region; the deviations from (70) correspond to the enhancement of �q/q(1 − q) near
q = 0 in the upper graph.

Nevertheless, we believe that equation (69) is not exact. Indeed, at 0 < q < 2 the numerically
found �q show clear deviations from exact parabolicity (69), which are of the order of 10%
near q = 0. Since this is precisely the regime in which finite-size effects have been found to be
very weak and �q was determined with a high accuracy, we interpret the observed deviations
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as very strong evidence for nonparabolicity of the exact multifractal spectrum of the SQH
transition. In particular, the deviation of the limiting value �q/q(1−q)|q→0 = 0.137±0.003
from 1/8 well exceeds the estimated numerical uncertainty.

We also calculated typical inverse participation ratios, P
typ
q = exp〈ln Pq〉 and the

corresponding dimensions τ̃q ≡ 2(q − 1) + �̃q .6 It follows from the general analysis of
the wavefunction multifractality [34] that τ̃q = τq for q � qc, where qc corresponds to the
zero α− of the singularity spectrum f (α) (defined below). In the present case we find from
the �q data qc = 3.9 ± 0.1 (the parabolic approximation (69) would imply qc = 4). For
q > qc the average 〈Pq〉 is determined by rare realizations, and τq < τ̃q . Furthermore, already
for q smaller than but close to qc, finite-size corrections to P

typ
q become large [20], leading to

large errors in the determination of τ̃q . For the SQH problem, we find that the scaling of P
typ
q

exhibits small finite-size corrections as long as q � 2.5, so that the corresponding exponents
τ̃q can be found with a high accuracy. The results are shown by circles in figure 4 (upper panel)
and are in full agreement with the values of τq obtained from the scaling of 〈Pq〉. For larger
q (q � 3) the finite-size corrections to P

typ
q (which we estimate to be ∼L−y with y ≈ 0.4)

become appreciable, strongly reducing the accuracy of determination of τ̃q .
The lower panel of figure 4 depicts the singularity spectrum f (α) obtained by a numerical

Legendre transform of the scaling dimension τq, f (αq) = qαq − τq with αq = dτq/dq . The
dashed line represents the parabolic approximation corresponding to (69),

f (α) = 2 − (α − α0)
2

4(α0 − 2)
α0 − 2 = 1/8. (70)

We see again that the parabolic approximation is numerically rather good; nevertheless, it is
not exact. Deviations from (70) are demonstrated in the inset which shows an enlarged view
of a region around the maximum α0 of f (α). The deviation of α0 − 2 = 0.137 ± 0.003 from
1/8 corresponds to the non-parabolicity of τq discussed above.

5.2. IPR fluctuations

We devote the remainder of this section to a brief discussion of the IPR distribution function
P(Pq), specifically, its evolution with the system size L and dependence on q. In analogy with
Anderson and quantum Hall transitions studied earlier [20, 34–37], we expect the distribution
P(Pq) to become scale-invariant in the large-L limit. Figure 5 demonstrates that this is indeed
the case. It represents the evolution of the distribution of ln P2 with the system size L. The
mean of the distribution is shifted as −τ̃2 ln L. Apart from small statistical fluctuations at the
largest system sizes, a clear tendency towards an asymptotic form is observed. To characterize
the width of the distribution P(ln Pq), we calculate the variance σ 2

q = var(ln Pq), as shown in
the inset of figure 5 for q = 2. The results extrapolated to L → ∞ (the finite-size corrections
are again of the type L−y with y ≈ 0.4) are presented in figure 6. The behaviour of σq

is qualitatively similar to that found for other localization transitions. A somewhat unusual
feature of the SQH transition is that in a rather broad range 0 � q � 3 the variance σ 2

q is
remarkably well described by the formula

σ 2
q = const × q2(q − 1)2 (71)

which has been derived for a metallic system [25, 38], or for the Anderson transition with a
weak multifractality, e.g. in 2 + ε dimensions [34, 36]. In the latter case this formula is valid
for q � qc. The accuracy of equation (71) is one more manifestation of the ‘close-to-metal’

6 In our earlier publications [20, 34, 36] we used the symbol τq to characterize the scaling of the typical value P
typ
q ,

and τ̃q for the average 〈Pq〉. In the present paper we have chosen to interchange the notation.
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character of the SQH critical point already mentioned in section 3, which leads to a relatively
large value of qc � 4. At larger q, the behaviour of σq becomes linear (as was also found for
the conventional Anderson transition [36, 37]), in agreement with the theoretical prediction
σq = q/qc for q 
 qc [36]. This is because in this regime the distribution P(Pq) is dominated

by a slowly decaying power-law tail P(Pq) ∝ P
−1−xq

q , where xq = qc/q for q > qc [34].
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6. Statistics of two-point conductances

So far, we have investigated properties of an open system. To define the two-terminal
conductance g, one opens the system by attaching two leads. According to the Landauer–
Büttiker formula, g = Tr t†t , where t is the transmission matrix between the leads. In the
framework of network models, the transmission matrix determining the two-point conductance
between the edges e and e′ has the form [16]

t = 〈e′|(1 − UP)−1U |e〉 (72)

where P = 1 − |e〉〈e| − |e′〉〈e′| projects out the states on the edges e and e′.
The statistics of the two-point conductance g(r, r′) has been extensively studied, both

analytically and numerically, for the conventional QH transition, exemplifying a localization
transition with non-critical DOS. It was shown that the moments 〈gq(r′, r)〉 obey a power-law
scaling [16, 17, 39],

〈gq(r, r′)〉 ∼ |r − r′|−Xq (73)

with a set of exponents Xq related to �q [19, 20],

Xq =
{
�q + �1−q q < 1/2
2�1/2 q > 1/2.

(74)

For the SQH critical point, only the average conductance 〈g(e′, e)〉 has been considered
previously. Gruzberg et al [10] found that

X1 = 2xρ = 1
2 . (75)

Beamond et al [13] used the mapping onto percolation to calculate 〈g(e′, e)〉 at the band centre
ε = 0 (z = 1), with the result

〈g(e′, e)〉 = 2P(e′, e) (76)

with P(e′, e) as defined in equation (33). Comparing (76) with (29), we see that 〈g(e′, e)〉 is
equal (up to the sign) to the diffusion propagator �(e′, e) = 〈Tr GR(e′, e; 1)GA(e, e′; 1)〉.

In this section, we will study statistical properties of g(e′, e) at the SQH transition. Note
that though the definition of 〈g(e′, e)〉 reminds us closely of that of the diffusion propagator
�(e′, e), the identical scaling of both quantities is not at all self-evident. In contrast, they
scale differently at conventional localization transitions, as can be easily seen by comparing
equations (73), (74) with (5). It is worthwhile to remind the reader of the physical reason
for this difference (see also a related discussion in [16]). The product

〈
GR

E(r′, r)GA
E(r, r′)

〉
has a meaning of the particle density (or, in an optical analogy, the radiation intensity) at a
point r′, induced by a source inserted into the system at a point r. In an infinite system at
criticality this quantity turns out to be infrared divergent: if a source is switched on at a time
t = 0, the detected intensity will increase with time without saturation, since the radiation
cannot propagate away fast enough. Therefore, in order to make 〈GRGA〉 finite, one needs
to allow the propagating wave to get out of the system, i.e. to introduce absorption. One
possibility is to make the absorption weak but uniform over the whole system, leading to〈
GR

E+iγ (r′, r)GA
E−iγ (r, r′)

〉 ≡ �(r′, r; 2iγ ), which is the same as introducing a small uniform
level broadening γ (or equivalently, a small frequency ω with an analytical continuation to
the imaginary axis, ω = 2iγ ). Alternatively, one can allow for a particle to be absorbed at the
points r and r′ only, but with a probability of order unity, yielding the two-point conductance
g(r′, r). Clearly, the two definitions are essentially different (which is already obvious from
the very fact that � depends on γ , diverging in the limit γ → 0, while g does not require
any parameter such as γ and is bounded, g � 1). Therefore, different scaling behaviour of �,
equation (5) and 〈g〉, equation (73) is not surprising.
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Returning to the SQH transition, we are thus naturally led to a question: why do � and
〈g〉 scale identically in this case? The reason is that the zero-energy diffusion propagator
�(e′, e) is in fact defined at γ = 0 (i.e. there is no need to introduce absorption or a finite
frequency to regularize it), see equations (32) and (58), (60). This can be traced back to the
vanishing of DOS at ε = 0. It is not a surprise that in this situation, when the absorption is
irrelevant, �(e′, e) and 〈g(e′, e)〉 (which only differ in the way the absorption is incorporated)
scale in the same way.

Let us consider now higher moments

〈[Tr G(e′, e; e−γ )G(e, e′; eγ )]q〉.
Applying the consideration of section 4.3, we find that the absorption (γ ) remains irrelevant
provided

2qxρ + �2q > 0 (77)

with the result

〈[Tr G(e′, e; e−γ )G(e, e′; eγ )]q〉 ∼ r−2(qxρ +�q). (78)

For the SQH case, condition (77) implies q < 3/2. (We make an assumption that
our consideration, which is strictly speaking performed for integer q, remains valid for
intermediate, non-integer values of q.) According to the above argument, 〈gq〉 scales in
this regime in the same way (78) so that (see also [23])

Xq = 2qxρ + 2�q (79)

and, using xρ = 1/4 and equation (69),

Xq � q(3 − q)/4. (80)

Note that, in contrast to Tr GG, the two-terminal conductance g is bounded from above, g � 2
(the factor two is due to spin summation and is not essential). Physically, it simply means
that for such rare realizations when Tr GG is large, g is limited by the contact resistance. It
follows that the exponent for 〈gq〉 should be a non-decreasing function of q. In other words, the
exponent Xq saturates after reaching its maximum at some q0. We find from (80) q0 � 3/2;
for larger q the exponent saturates at the value Xq�q0 = Xq0 � 9/16 (these moments are
determined by the probability to find g ∼ 1).

Equation (80) implies, in particular, a normal distribution of ln g at r 
 1 with the average
〈ln g(r)〉 = −Xt ln r and the variance var[ln g(r)] = b ln r , where Xt � 3/4 and b � 1/2.
These values correspond to the parabolic approximation (69); more accurate predictions can
be obtained by using the numerical results for �q ,

Xt = X′
0 = 2xρ + 2�′

0 = 2xρ + 2(α0 − 2) � 0.774 (81)

b = −X′′
0 = −2�′′

0 � 0.58 (82)

(here a prime denotes the derivative with respect to q).
We now turn to a numerical study of the two-point conductance. While we did not

attempt a high-precision numerical determination of the spectrum of corresponding exponents
Xq (as presented in section 5.1 for the multifractal spectrum of wavefunctions), we have
verified some of the key predictions of the above analytical considerations. Figure 7 illustrates
evolution of the distribution function P(g) with the distance r between the contacts; it is
seen that at sufficiently large r the distribution becomes log-normal as expected. In figure 8,
we show the scaling of the average 〈g〉 and the typical gtyp = exp〈ln g〉 values of the two-
point conductance, along with analogous quantities 〈|G|2〉 and |G|2typ = exp〈ln |G|2〉 for a
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Figure 7. Distribution of the two-point conductance at three different distances between the
contacts, r = 5.7 (∗), 14.1 (+), 133 (�); the system size is L = 196. The dashed line indicates a
log-normal fit with parameters 〈ln g〉 = −4.72 and var(ln g) = 3.15.
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Figure 8. Scaling of the two-point conductance with distance r between the contacts: average
value (empty symbols), 〈g〉, and typical value (full symbols), gtyp = exp〈ln g〉, in systems of sizes
L = 128 (�) and L = 196 (◦). Also shown is the scaling of the two-point Green function, 〈|G|2〉
and |G|2typ = exp〈ln |G|2〉 (L = 128 (�),L = 196 (�)). The lines correspond to the r−1/2 (dotted)

and r−3/4 (dashed) power laws. Deviations from power-law scaling at large values of r are due to
the finite system size.

closed system, |G|2 ≡ −Tr G(e′, e; 1)G(e, e′; 1). For the average values, 〈g〉 and 〈|G|2〉,
the numerics fully confirm the theoretical results (76), (29) telling us that both quantities
scale as r−1/2 and, moreover, are equal to each other. A non-trivial character of the equality
〈g〉 = 〈|G|2〉 is well illustrated by the data for typical quantities: gtyp and |G|2typ are not equal.
Nevertheless, they are found to share a common scaling: gtyp, |G|2typ ∼ r−Xt , confirming our
arguments presented above. Furthermore, the numerically obtained value of the exponent,
Xt � 3/4, is in agreement with the theoretical prediction (81).
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7. Summary

Let us summarize the main results of the paper.

1. We have extended the mapping of the SQH network model onto the classical percolation
and calculated two- and three-point correlation functions at the SQH transition. This
allowed us to determine analytically the fractal exponents �2 and �3 governing the
scaling of the second and third moments of the wavefunction intensity, with the results
�2 ≡ −η = −1/4 and �3 = −3/4.

2. We have performed a thorough numerical study of the multifractal spectrum �q . The
obtained spectrum is given with a good accuracy by the parabolic law (69), but shows
clear deviations from parabolicity (figure 4).

3. Statistical properties of generalized inverse participation ratios Pq at the SQH transition
are similar to those found earlier for other localization transitions. In particular, the
distribution function P(Pq) becomes scale-invariant in the limit of large system size.

4. We have analysed statistics of the two-point conductance g at the localization transition
with a critical density of states. Specifically, we have presented scaling arguments
which link the exponents Xq governing the spatial decay of 〈gq〉 to the wavefunction
multifractality spectrum �q (see equation (79)). This yields, in particular, for the typical
conductance at the SQH critical point gtyp ∼ r−Xt with Xt � 3/4 (see equation (81) for
a more accurate value), as confirmed by numerical simulations.

In recent years, considerable progress has been made in understanding the conformal
field theories related to problems of two-dimensional fermions subject to quenched disorder
[17, 18, 21–23, 32, 40–46]. In particular, a relation between the wavefunction multifractality
in two-dimensional disordered systems and the operator content of corresponding conformal
field theories has been discussed in a number of publications [18, 23, 32, 42]. It remains
an open question whether the multifractal exponents �q,Xq for the SQH transition can be
computed by the conformal field theory methods. Note that our results are against the proposal
of [23], where the result �q = q(1 − q)/4 was obtained. Apparently, this indicates that the
theory considered in [23] and obtained [22] from a particular network model with fine-tuned
couplings does not belong to the SQH universality class.
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Appendix. Proofs of the mapping onto percolation

In section 4.1 two statements were formulated which allow us to calculate averaged products
of two (section 4.1) and three (section 4.2) Green functions. Here we give some more details
on the proofs of these statements. At the end of the appendix we will also explain why our
calculation cannot be extended to products of q � 4 Green functions (and thus to higher
moments of wavefunctions).

A.1. Statement 1

The first statement says that only paths visiting each node 0 or 2 times are to be considered.
Its proof for the case of two-point functions was given in section 4.1. The analysis of the case
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Figure 9. Configurations of paths for the correlation function (47) for a node visited four times.

of three-point functions (considered in section 4.2) goes along similar lines, and we present
its brief outline only. In analogy with (22), we have to consider an expression of the type

∞∑
k1,k2,k3=1

〈
Tr B1U

k1
f B2U

k2
f B3U

k3
f

〉|A(f, f )|k1+k2+k3 (A1)

where ki is the number of returns of the ith path (i = 1, 2, 3) to the edge f . Performing
averaging over Uf as in (23), we cast (A1) into the following form:

∞∑
k1,k2,k3=1

(
b1ck1+k2+k3 + b2ck1+k2−k3 + b3ck1+k3−k2 + b4ck2+k3−k1

)|A(f, f )|k1+k2+k3 . (A2)

The first term in curly brackets is trivially zero in view of (19). To demonstrate that remaining
terms give zero as well, we perform a summation over ki at fixed k = k1 + k2 + k3. Indeed, it
is not difficult to show by a straightforward arithmetic that for an arbitrary k∑

k1,2,3=1,2,...; k1+k2+k3=k

ck1+k2−k3 = 0. (A3)

Therefore, the sum (A2) is equal to zero, which completes the proof of the statement 1 for the
three-point Green functions.

A.2. Statement 2

The second statement allows us to reduce the nodes visited four times to a superposition of
contributions (i) and (ii) of figure 2, with the factors cos2 θ and sin2 θ , respectively. We will
give the proof for the (most non-trivial) case of a product of q = 3 Green functions; the
proof for q = 1 and 2 is obtained in the same way. More specifically, we will consider the
correlation function (47); the correlator (46) is treated analogously.

Each of three Green functions in (47) generates a sum over closed loops (e → e, e′ → e′

and e′′ → e′′, respectively). For a given lattice node, let us label the corresponding incoming
edges as (1, 2) and the outgoing ones as (3, 4). We are considering a contribution of paths
visiting this node in total four times. This generates four path segments starting each on one
of the edges (3, 4) and ending on one of the edges (1, 2) and not passing through any of these
edges. We are going to show that for any configuration of these four segments statement 2
holds. It is easy to see that there exist two essentially different types of such configurations
(shown in figure 9); all others can be obtained by permutations of e, e′ and e′′, and/or by
lattice symmetry operations.
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Consider first the configuration (a) of figure 9. We have to sum over all ways to connect
the four path segments by various configurations of scattering events at this node shown in
figure 2. Specifically, only such connections are allowed which generate exactly three closed
loops, each containing one of the edges e, e′, and e′′. There are three possibilities how this can
be done, since the segment that does not contain any of the edges e, e′, e′′ can be connected in
a loop with any of the remaining three. In one of these cases the configuration of paths at the
considered node is of type (ii) of figure 2, in the two other cases it is of type (iii). We thus get
the following contributions:

〈Tr U2A(2, 3)U3 Tr U2A
′(2, 3)U3Tr U1A(1, 4)U4U1A

′(1, 4)U4〉 × s4 (A4)

〈Tr U2A(2, 3)U3 Tr U1A(1, 4)U4 Tr U2A
′(2, 3)U3U1A

′(1, 4)U4〉 × (−c2s2) (A5)

〈Tr U2A
′(2, 3)U3 Tr U1A(1, 4)U4 Tr U2A(2, 3)U3U1A

′(1, 4)U4〉 × (−c2s2). (A6)

Here A(2, 3) is a sum over all paths from 3 to 2 passing through e, A′(2, 3) is a sum over
paths 3 → e′ → 2, A(1, 4) is a sum over paths 4 → e′′ → 1 and A′(1, 4) is a sum over paths
4 → 1 (figure 9(a)). Also, we have denoted s = sin θ and c = cos θ .

To perform the integration over Ui , we use the following formulae of integration over
SU(2) matrices:

〈Tr UV1 Tr UV2〉U = 1
2 Tr V

†
1 V2 (A7)

〈Tr UV1UV2〉U = − 1
2 Tr V

†
1 V2 (A8)

〈Tr UV1U
†V2〉U = 1

2 Tr V1 Tr V2. (A9)

Here matrices V1,2 are assumed to be of the form Vi = |Vi|Ṽi , where Ṽi ∈ SU(2) and |Vi| is
a real number (we recall that A(i, j) are exactly of this type, see section 4.1).

Applying repeatedly the rules (A7)–(A9), we perform integration over all matrices Ui

(i = 1, . . . , 4) in equations (A4)–(A6). We then find that all three contributions (A4)–(A6)
are proportional to Tr A†(2, 3)A′(2, 3) Tr A†(1, 4)A′(1, 4), with coefficients − 1

4 s4,− 1
8c2s2

and − 1
8c2s2, respectively. The total coefficient is therefore

− 1
4 s4 − 1

8c2s2 − 1
8c2s2 = − 1

4 s2. (A10)

We see that the same result would be obtained if we assign the weight s2 to the first
contribution (which is of type (ii) of figure 2) and discard the remaining two terms (which are of
type (iii)). This establishes the validity of the statement 2 with respect to the configuration (a) of
figure 9.

Configuration (b) of figure 9 is analysed along the same lines. We have again three
contributions, one of type (ii) of figure 2 and two of type (iii),

〈Tr U2A(2, 3)U3 Tr U1A(1, 4)U4 Tr U1A(1, 3)U3U2A(2, 4)U4〉 × s4 (A11)

〈Tr U2A(2, 3)U3 Tr U1A(1, 3)U3 Tr U1A(1, 4)U4U2A(2, 4)U4〉 × (−c2s2) (A12)

〈Tr U1A(1, 3)U3 Tr U1A(1, 4)U4 Tr U2A(2, 3)U3U2A(2, 4)U4〉 × (−c2s2). (A13)

After integration over Ui according to the rules (A7)–(A9), they all produce an identical
structure, Tr A†(2, 3)A(2, 4)A†(1, 4)A(1, 3), with the coefficients 1

4 s4, 1
8c2s2 and 1

8c2s2,
respectively. Again, retaining only the (ii)-type contribution (A11) and assigning the weight
s2 to it, we would obtain the same result. This completes the proof of statement 2 for the
three-point correlation function (47).
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A.3. What about q > 3?

A natural question is whether the present approach can be generalized to higher-order
correlations of wavefunctions governed by multifractal exponents �q with q > 3. The answer
is negative. In fact, neither of statements 1 and 2 apply (or, in a more careful formulation, our
proofs fail) for q � 4, as we are going to explain in brief. Concerning statement 1, consider
a generalization of the expression (A1) to q = 4, and choose k ≡ k1 + k2 + k3 + k4 = 4.
Obviously, there is just one such term (all ki = 1) in the sum, and it is easy to see that it is
generically non-zero. Therefore, no cancellation of terms with k > 2 happens in this case,
i.e. statement 1 does not work. Turning to statement 2, consider, e.g., a correlation function
D̃(e, e′, e′′, e′′′; γ ) analogous to (47) but containing a product of four traces of Green functions.
Trying to prove statement 2, we will then have to consider path configurations very similar
to those shown in figure 9 but with all four paths containing one of the edges e, e′, e′′, or e′′′.
At the next step the paths should be connected via the scattering processes at the node—this
time to generate four closed loops. However, for each of the configurations shown in figure 9
there is only one way to do this, so that only one contribution will arise in place of three terms
(A4)–(A6) or (A11)–(A13). Clearly, statement 2 is not valid in this situation. Therefore, the
mapping onto the classical percolation is not applicable for higher moments, q > 3. This is
in correspondence with the fact that q = 3 separates two regimes of qualitatively different
behaviour of correlation functions, as discussed in section 4.3.
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